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the amplifier noke figure was 25 dB. Noise figures in

the range 15 to 20 dB have been reported [7] for coaxial

amplifiers.

The amplifier results reported here were obtained by

using a 10-dB directional coupler to monitor the output.

The load VSWR at the amplifier input was less than

1.2:1 over the X band.

DISCUSSION

The similarity between the effects of bias voltage and

heat-sink temperature indicate a reduction in carrier

mobility due to thermal effects as part of the stabiliza-

tion mechanism of supercritically doped Gunn-diode

amplifiers. Such diodes proved to be easily stabilized in

waveguide circuits that could provide low enough

values of load resistance. For the circuit shown in Fig. 1

the calculated load resistance decreased from 140 Q at 8

GHz to 42 Q at 12.4 GHz.

The demonstration of stable operation of Gunn-diode

amplifiers in waveguide circuits opens the possibility of

solid-state amplifiers at millimeter wavelengths.
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Finite-Element Solutions within Curved Boundaries

DAVID J. RICHARDS AND ALVIN WEXLER

Abstract—The paper shows that a curved boundary need not be

approximated by a small number of finite-element sides, resulting in
a coarse polygonal approximation to the shape of the region and

consequent inaccuracies, but may be defined as accurately as de-
sired. An algorithm and associated mathematics are presented for
locating the stationary point of a functional by the Rayleigh-Ritz
method with a two-variable power series as a trial function. As a
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particular example, the functional employed is one that is made
stationary by the solution of Poisson’s equation under mixed, Dirich-

let, or Neumann boundary conditions. The technique is based on the
fact that the three boundary conditions are natural ones. Results are

presented for a problem involving curved boundaries under mixed

and Neumann conditions and for the capacitance calculations of a
pair of noncoaxial cyfinders having specified potentials. Comparisons
are made with the iinite-dtierence method. It is concluded that the
finite-element method is, in nearly all aspects, superior to tinite dif-
ferences—particularly when curved boundary modeliig errors are
reduced. It is expected that the method described will be equally
useful for, and quite simple to adapt to, the solution of the Hehnholtz

equation in an enclosed region.
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1, INTRODUCTION

AS a particular example of the application of the

finite-element technique to regions that are

bounded by curves, this paper treats the Poisson

equation

– V2C$= p(x, y) (1)

under the following boundary conditions:

131#1
— + u(s)(j)(s) = /2(s)
CM3*

and

(2)

@(s) = g(s) (3)

within a homogeneous, isotropic region. The mixed

boundary condition (2) holds over a portion of the

boundary Cl. (When u = O, this becomes the Neumann

boundary condition.) The Dirichlet boundary condition

(3) holds over a portion of the boundary denoted Cz.

C denotes the entire boundary.

As indicated in [1], the appropriate functional is

F(u) = ~ ~ [1 Vu 12 – 2244x, y)] dxdy
R

+ ~ [U(S)U2 – 2/2(s)24] ds
cl

s
– 2 [u – g(s)] ;ds

C2 (4)

for a two-dimensional region as a specific example. u is a

trial function approximation to+. As shown in [1], (2)

and (3) are boundary conditions that appear naturally

at the stationary point of (4).

II. RAYLEIGH–RITZ PROCEDURE

Because boundary conditions (2) and (3) are natural,

we can employ as a trial function a linear combination

of functions, none of which need satisfy the stated

boundary conditions individually.

A convenient trial function is the polynomial

M

Z& y) = ~ Cixmy” (5)
‘i= 1

where x and y are the independent variables and m and

n are integers. The c;, known as the variational parame-

ters, are coefficients to be determined in an attempt to

find the stationary point of (4). This is accomplished by

substituting (5) into (4), performing the indicated

operations, then differentiating F with respect to each

c j and setting each resulting equation to zero. We are

left with a set of M simultaneous linear equations in ill

unknclwns and may solve for all the unknown ci Co-

efficients. If a sufficient number of terms are employed,

u (x, :Y) should be a reasonable approximation to 4(x, Y).

The order of the polynomial (5) is N. Thus

O<m+n<N (6)

and for all possible mn combinations, there must be

M = +(N+ 1)(N+ 2) (7)

terms.

A simple, linear ordering scheme for the terms of the

complete polynomial (5) is obtained by taking

i=k+n)(w+n+l)+w+ 1 (8)

thus giving an expanded version of (5) that is

24(X, y) = c1 + C2X + c3y + C4X2 + Cwy + “ “ “ . (9)

This is the system employed in the program associated

with this paper. For convenience, we can write

M

‘U(X, y) = ~ C#i (lo)
%==1

where

f~ = Xmy” (11)

represents the variable terms of the polynomial and the

subscript is set by (8).

Once the coefficients are computed, the field approxi-

mation u (x, y) is completely specified. For reasons of

convenience, pointed out later, it is often preferred to

require that the polynomial collocate with the potential

uj(~j, yj) at M particular node points specified by xiyj

coordinate pairs. (The subscript j indicates that Uj is

not a continuous function of position.) To accomplish

this, the polynomial (10) is successively expressed at

each node point j= 1, 2, , s . , ill, i.e.,

M

‘Uj(Xj, Yj) = ~ Cifjt (12)
,=1

where

jji s ~jmyjm. (13)

Thus we have M equations in M unknowns giving

U=BC (14)

where

B = [f,ij. (15)

Therefore, solving for c, the vector of coefficients of

(lo),

C=AU (16)

where the square matrix

A = [a;j] = B-l (17)

is either computed by inversion or assembled by the

Lagrange interpolation technique, one example being

[2]. Note that difficulties arise in the inversion of B as N
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increases. This is due to the fact that B is of Vander-

monde type [3, p. 157], [4, pp. 323–324], and con-

sequently becomes increasingly ill-conditioned with N,

By expanding (16) we are able to express the unknown

coefficients ci in terms of the unknown node potentials

Ujf I.e.,

c,= ~ a,,u,. (18)
j= 1

The variational parameters c;, in (5), may now be re-

placed by the new Rayleigh–Ritz parameters uj.

The source function ~(x, y) is defined in terms of

potentials pi, one value at each of the node points

j=l,2, ..., M, and an order N interpolating poly-

nomial gives P(X, y) as a continuous function. The

polynomial coefficients are given by (18), with the a~j

terms as previously found and with Ui replaced by pi.

Functional Stationary Point

To approximate the stationary point of the functional

(4) we differentiate F with respect to each variational

parameter uk and set each resulting equation to zero.

Rearranging, we obtain

Jf.r:;(%)+:;(:)]””

&u

+ Jcl “u ~ S[du &u 8 i?u
ds– —

( )1C, ~uk~~u— ‘— ‘sdfi duk

= Ss,Zpdxdy+ sh~ds
c, duk

-Sc,g:(:)ds. (19)

Equation (19) is arranged so that all unknown tik

appear linearly on the left-hand side and the right-hand

side is constant. I t is easy to see that this is so, From

(10) and (18) we have

M M

()

u = ~ ~ U;jfi %. (20)
j= 1 &1

Uj appears linearly in (20), and in du/dx and du/i3y as

well. Note that

: = ~ aj~f~ (21)
i=l

where aik is a known constant, f,= Xmym with specified

m and n, and uk does not appear. Also

du du dx du dv
—+—~

8?’2 = G & ay a~t
(22)

where 8x/&z and c3y/8n are direction cosines, has uk

appearing linearly. All x and y variables vanish upon

integration and u, P, h, and g are known functions of

position. Therefore, when (19) is repeated for all un-

known u~ with k =1, 2, . . ., M, we obtain the matrix

equation

Su=b (23)

where S turns out to be symmetric. If no natural

Dirichlet boundary conditions are required, S is positive

definite as well. Note that the usual method of specify-

ing a Dirichlet condition along a triangle side is to force

the N+ 1 nodes along that side to the Dirichlet value.

In this case again S is positive definite.

III. SUBSECTIONAL BASES

It is often advisable not to assume one polynomial

over the entire region of interest, but rather to subdivide

the region and consider a polynomial over each resulting

smaller region. Thus the finite-element method is a par-

ticular implementation of the variational method with

subsectional bases. There are at least three practical

reasons for the use of a finite-element scheme: 1) it per-

mits the equivalent of finite-difference mesh refinement

in regions of rapid field variation; 2) it produces a ma-

trix S that has null matrix blocks, and thus permits

storage economies to be effected and block-iterative

schemes to be employed in large problems; and 3) it

allows complicated boundary shapes to be modeled in

a piecewise-linear (i. e., polygonal) sense when elements

with straight sides are employed. The last reason is not

a very convincing one, as many triangle sides are often

required to model a curved boundary accurately. This

paper describes an improved scheme for representing

curved boundaries accurately.

Triangular Subdivision

A convenient element shape for two-dimensional

regions is the triangle, and is consequently the one most

frequently employed.

Consider that each triangular subdivision has a piece-

wise-plane trial function u (x, y) expressed over it. This

corresponds to the first three terms of (9). Equivalent y,

the trial function may be expressed in terms of the po-

tential at each of three noncollinear node points, con-

veniently located at the vertices of the triangle [5], [6].

Consider also that the potential at node points, at which

the vertices of two or more triangles meet, is common

to each of the triangles and that sides common to two

adjacent triangles are of equal length. Qualitatively, if

one thinks of the exact potential solution as a surface

over the x–y plane, the finite-element method produces

a piecewise-planar approximation to the solution re-

sembling triangular facets cut on a diamond.

The method is improved by defining a polynomial

solution approximation, in the two independent space

variables, over each triangular interval. Although, due

to storage limitations on the total number of free vari-

ables, the number of elements must be reduced, the
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result is usually a significant increase in accuracy. A

good example of this approach, applied to the solution

of the Helmholtz equation in waveguides, is furnished

by [7].

We will enforce continuity of potential across adja-

cent triangle sides. Each polynomial is defined in terms

of either coefficients or node potentials, the number of

such parameters being given by (7). An order N poly-

nomial is uniquely defined along a straight line by re-

quiring it to collocate with potentials at N+ 1 node

points. Thus, if N+ 1 nodes are common to two adjacent

triangles, we are insured that the potential shall be con-

tinuous, although the normal derivative need not be.

However, it can be shown that the interface condition—

i.e., continuity of flux crossing the boundary between

adj acenc elements—is a natural one and will be more

precisely satisfied as N increases. Therefore, because of

this convenience, nodal potentials are employed rather

than polynomial coefficients as variational parameters

in the finite-element method.

It is usual to place a node at each vertex. As N+ 1 are

required along each side, a total of 3N nodes are dis-

tributed over the boundary. The remaining M– 3N

= (N– 1.) (N– 2)/2 nodes are inserted within the tri-

angle interior.

When the region is not subdivided, (23) results by

performing the operations described in (19). For a sub-

divided region, the functional (4) has a contribution

from each subdivision, i.e.,

(24)

Fr is the contribution from one element region r. Then

(25)

Thus S and b are assembled by accumulating contribu-

tions of each subregion.

Curved Boundaries

hlost previous implementations of the finite-element

methocl introduced considerable modeling errors in at-

tempting to approximate curved boundaries by triangle

sides. The errors occur because there are severe limita-

tions on the number of triangles that one can expect to

accommodate. However, there is no need to model a

curved boundary with triangle sides. This is because one

need not restrict the polynomial trial function to exist

only within the triangle, i.e., the polynomial is defined

over all space by node potentials only on the triangle.

And, conversely, the polynomial trial function need not

be usecl to represent the field over the entire element.

It could be restricted to part of an element, although

some node points lie outside of that part.

In the work reported in this paper, two vertices of

each triangle adjacent to a curved boundary are located

on the boundary. The boundary may curve into the

653

triangle or away from it. If the former, that part of each

surface integral of (19) is performed not over the entire

triangle but only over that part of it in the interior of

the region. If the boundary curves away from the tri-

angle side, then the integration is performed over the

extra adj scent area, using the polyomial defined within

the triangle. This is entirely proper, as the polynomial

exists over all space and not just within the region con-

taining the defining node potentials aj. Likewise, each

contour integral follows the boundary exactly.

To actually accomplish this end the boundary could

be defined in a piecewise-polynomial sense. Thus the

resulting integrations all involve polynomials and may

be fairly easily accomplished. In this work, for simplic-

ity, the boundary was defined in a piecewise-linear

(polygonal) fashion—thus requiring more computation

than would otherwise be needed, as a large number of

linear pieces needed to be employed.

The above polygonal approach should not be con-

fused with that of approximating the boundary with

triangle sides. The latter approach is limited as to the

number of linear segments available, whereas the former

permits one to use virtually as many as desired in order

to approximate the boundary with a precision consistent

with the overall accuracy expected.

IV. INTEGRATION SCHEMES

Following (22), it was pointed out that the integrands

of (19) are power series containing terms of the form

Xnyn. We shall see that if the boundary is represented

by piecewise polynomials of the same type, the resulting

integrations are conveniently performed after certain

simple polynomial multiplications are carried out. Such

operations can be efficiently programmed.

Contour Integrals

Between any two points a and b the contour integral

consists of a sequence of terms of the form j“: Xmy” ds.

Note that the argument c-an include u(s) and k.(s) as

specified polynomial functions of position.

The equation of the line connecting a to b is

y=a+px

where a and ~ are easily found. Since

ds= ~l+~2dx

we get

(

b

‘– f’b~’% + B*)” d-~X“Y” ds = ~~ + /?2

(33

(27)

.Tb

x.

}
f?X)””-’ dx (28)
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which gives an analytic solution by a recursive defini-

tion. This is repeated until n – 1 = O and the final inte-

gration remaining involves only WJ.

If the slope of

then by writing

we integrate

s

b

Xmy” ds
.

instead.

the straight line becomes too steep,

X=y+sy (29)

s
=~l+fp ‘b(y+ 5Y)~Y” dy (30

Ua

Note that all contour integrals are performed in a

counterclockwise direction about any region.

The unit normal A to a point on the boundary is easily

defined in terms of an angle O measured counterclockwise

from the positive x direction. Again, considering a small

linear boundary segment,

(31)fi=tcos O+ Jsin O.

To obtain the normal derivative of a polynomial u, say,

it is only required to multiply each term of u by the

appropriate direction cosine;

da’t L%% du
—. —cos O+ —sin6.
dn dx dy

(32)

Equation (19) also requires (13/&z) (du/du~) and this is

obtained in the same fashion.

Surjace Integrals

Surface integrals involve terms of the form

J’s

*b ‘J
— X~y” dydx

% o

where the limit y on the inner integral is a function of x.

This gives the integral over the region enclosed by the

straight lines a–b, y = O, x =x., and x ‘xb. Therefore,

Ss

‘b II
— %~y” dydx

z. o

Ss

‘b .+L%
—— — Xmy” dydx

x. o

–1 ‘b
—

s
x“@ + @x)*+’ dx (33)

?Z+l ,=

which may be integrated as in (28). If the slope is steep,

a change of variable of integration (from x to y) is made

as in (30). Note that for a closed region the directions

of integration must be counterclockwise around the

boundary.

V. RESULTS

In order to obtain an insight into the accuracy of the

results produced by the program, a number of tests were

carried out. Problems having analytical solutions

(found by separation of variables or conformal trans-

formations) were solved numerically. An error measure

/

: (4, - u,)’

E=

d

(34)

$ A’

was evaluated over a discrete-point set. & is the exact

solution and u, the computed value at node;. The num-

ber of points was approximately m = 400. Equation (34)

is actually the ratio of the Euclidian error norm to the

Euclidian function norm (i.e., a fractional error norm)

with delta-function weighting factors.

Another useful measure of numerical solution quality

is the computation of the flux imbalance F. The frac-

tional flux imbalance is

J

du
— ds

. 8?2 ,
F=

s

du
(35)

— ds
,, df% *

where the integral on the denominator is performed

along the boundary across which flux enters the region,

and the numerator consists of an integral about the

entire boundary, A homogeneous region and p (x, y) = O

is assumed.

A residual measure R was also defined to indicate,

particularly in the absence of an exact solution, the

fractional deviation of V’u from zero. Thus

is computed by evaluating V2U(X, y) at

(36)

each of the m

points specified. Thus we have a fractional residual

norm.

The smaller the value of E the more accurate the

answer. Usually, F and R decrease with increasing ac-

curacy. Note that we cannot usually obtain E, as the

solution is rarely known exactly. However, F and R can

be computed from the approximate solution. If we can

qualitatively relate F and R to E, then an assessment of

the accuracy of a given solution can be made.

Among the types of problems that were solved, for

which exact solutions were known, were a rectangular

region, a sector of an annulus, and a re-entrant corner.

Boundary conditions tested on these shapes were homo-

geneous and nonhomogeneous Dirichlet, mixed, and

Neumann. Problems solved generally included at least

two of the above conditions.

With all problems, E decreased as the order of the

polynomial increased to N =5. In all cases also F and R

decreased with increasing polynomial order. For ex-

ample, in solving the field within the sector of an an-

nulus having mixed boundary conditions, the percentage

flux imbalance (i,e,, FX 100) dropped from 3.6 to 0.38



RICHARDS AND WEXLER: FINITE-ELEMENT SOLUTIONS 655
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Fig. 1. Equipotential contours V within a region having curved
boundaries, given by the solution of Laplace’s equati?n with
iNeumann andmixed boundary conditions. Ilashed lines mdlc.ate
the finite-element triangle arrangement employed. Fo~ clarity,
dashed lines are omitted along boundary segments having large
radii. N=2.

percent, and the percentage error norm (i.e., EX1OO)

dropped from 0.17 to 0.034 percent, while polynomial

order increased from three to four using two triangles.

Thus E and F may be considered very roughly propor-

tional. These figures are representative of all tests run.

The field in the immediate vicinity of an internal

corner is not found accurately, as the power series is in-

complete in such a case. However, the field reasserts its

correct shape a small distance away. The above-

mentioned results also apply in the case of internal

corners.

Exan?jle with Neumann and Mixed Boundary Conditions

Fig. 1 shows a fairly complicated region bounded by

two radial lines (d–e and a–b), one line parallel to a–b,

three coaxial curves of fairly large radius, and two arcs

having a significantly smaller radius. Neumann and

mixed boundary conditions are imposed as indicated.

The curve b–d was described by 60 linear segments and

a–e by 40 of them so that the shapes plotted on 8&by-

1 l-in paper looked smooth and not polygonal.

The problem is not just an academic abstraction but

is a practical heat-flow problem translated to electrical

terms. It represents an asymmetric portion of a section

of finned nuclear fuel sheath with a uranium heat source

in the center of a pipe that is immersed in coolant. The

flow of heat into the coolant is impeded by the effect of

the I>oundary layer, i.e., convective heat dissipation.

FINITE DIFFERENCE–FINITE ELEMENT COMPARISON

IBM 360/65 Computer
Number Percentage

of of Flux
Equations CPU Time Imbalance

—.
Finite difference 155 3.0 minn 0.70 —
Finite element Qb O.lmin 0.06

SOptimum acceleration factor used.
b Polynomial order N= 2 and number of triangles equal to 13 as

shown in Fig. 1.

This is analogous to a resistive boundary in which the

current crossing it is proportional to the voltage differ-

ence.

Although the finite-element method is generally con-

sidered to be more efficient than the finite-difference

method, it could be argued that the latter is sometimes

more accurate within curved boundaries. Because of the

large number of finite-difference nodes that may be

accommodated, by using successive overrelaxation, the

boundary may be fairly precisely described. Using finite

elements, and direct-solution methods, fewer nodes are

employed with only a small number adj scent to the

boundary, thus resulting in larger modeling errors due

to the coarse polygonal approximation. However, this

argument cannot be sustained when the accurate

boundary-definition method, described in this paper, is

used in the finite-element scheme.

The problem defined in Fig. 1 was also solved by finite

differences. The Laplacian operator in polar coordinates

was discretized. Uniform angular and radial intervals

were used, except near boundaries where nonuniform

operators were employed when needed. To speed up the

finite-difference program as much as possible, the equa-

tions resulting from nonuniform operators were stored

and retrieved as required rather than regenerated at

each iteration. Table I shows two representative com-

puter runs comparing finite differences and finite ele-

ments. A brief glance at the results indicates that the

finite-element program produces results that are very

much more accurate than finite differences in much less

time. The accuracy is improved by perhaps a factor of

10 while the time is reduced by a factor of 30 with

roughly equal storage requirements.

As a check, the fractional residual norm R was calcu-

lated using the five-point discretization of V2Zt over the

difference and variational solutions. R was found to be

about 25 times larger in the former than in the latter

results. This served to indicate that the difference equa-

tions were not as accurately solved as they might have

been. Some, but not very much, accuracy could still be

gained by continuing the successive overrelaxation (SOR)

process at the expense of still more computing time.

There is no acceleration factor that one need be con-

cerned with in the finite-element scheme, the equations

being solved directly. The finite-difference results were

obtained by using the optimum acceleration factor de-

termined experimentally in aclva~ce, Generally, the
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factor will not be known and so the 3.0 min central

processing unit (CPU) time stated should be considered

a lower bound for this problem. The execution time for

the finite-element program depends primarily upon the

polynomial order of the approximate trial field and in-

creases roughly in proportion to W to Ns for a poly-

nomial of order N.

Along the radial lines and the inner surface, boundary

condition expressions were written using central differ-

ence derivative expressions of order hz. Everywhere else,

boundary node potentials were determined by linear

interpolation between two adjacent interior nodes and

by employing the stated derivative boundary condition.

This is a first-order approach and was employed in

preference to a more complicated higher order approach.

The flux imbalance was not always found to be a mono-

tonic function of mesh interval spacing. For example,

upon going from 155 to 200 equations, the heat-flux

imbalance increased from 0.7 (one of the better figures)

to 3.3 percent, and the temperature plots suffered as

well. on the other hand, the finite-element results

always behaved monotonically and settled down quickly

with increasing polynomial order. When the case N = 3

was run (78 equations), for the problem of Fig. 1, the

potential contours could not be distinguished from those

presented in this paper.

It has been found that the accuracy of the finite-

difference method suffers greatly by having boundaries

not coincident with mesh lines. In order to improve the

accuracy it is necessary to have a fine grid everywhere,

thus causing an unnecessary increase in interior nodes

and resulting in increased computational and storage

requirements. As an alternative to this, the mesh can

gradually be refined in regions adjacent to the boundary.

However, this introduces great programming difficulties

and dubious accuracies. Previous finite-element schemes

have introduced considerable modeling errors by ap-

proximating curved boundaries by triangle sides. Here

Ire have been able to describe the boundary to any re-

quired accuracy without the expense of introducing

additional unknowns,

One should be wary of nonconvex regions, even if the

internal curves are far from being corners. Our experi-

ence has shown that such bends should be enclosed

within one or more triangles of fairly small extent, as in

Fig. 1. This has the effect of preventing “contamination”

of the rest of the solution. An injudicious rearrangement

of triangles can cause the error to increase by an order

of magnitude.

Of- Center Cylinders

The capacitance calculation of the pair of noncoaxial

cylinders, of Fig. 2, serves as an example of curved

boundaries under Dirichlet boundary conditions. Due

to symmetry, only half of the cable was considered with

an clement arrangement as indicated. The capacitance

Fig-. 2. Off-center cylinders modeled by triangle sides (top) and by
small linear segments (bottom) with 90 segments per curve.
Equipotential contours are indicated with 1 V between conduct-
ing surfaces. N= 3.

in farads/meter, is given by Smythe [9, pp. 76–78 ]:

[( R12 + R22 – D2 ‘1
C = 27re cosh–~

2RIR2 )] ~
(37)

RI and R2 are the radii of the cylinders and D is the

distance between their centers.

There are two ways of calculating the capacitance of

the system. By computing the stored energy, and noting

that the conducting surfaces have a potential difference

of 1 V between them,

c=JJlwl’d*@ (38)

where the integration is performed over the entire cross

section (i. e., twice the region shown in Fig. 2). Alterna-

tively, the capacitance is equal to the charge stored

when V= 1, i.e.,

s

8+
C=e --- ds (39)

where the integral is performed over the outer or inner

conductor.

The usual way of modeling such curved boundaries is

by means of triangle sides, resulting in the rather coarse

approximation shown at the top of Fig. 2. The Dirichlet

condition is enforced. Having introduced this amount

of modeling error, one can only expect to deduce ac-

curately the solution of a structure that is of no interest.

In the bottom part of the figure, the actual problem is

much more faithfully represented by using 90 linear seg-

ments for each curve with the boundary condition made

natural.

Table II indicates, as one would expect, that the

capacitance is more accurately determined when the
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TABLE II
—

Capacitance Calculation Errors for a Pair of
Off-Center Cylinders (Fig. 2)

Ca,,,, = 92.229 pF/m

iv

—
Polygonal boundary 2 – 1.4 percent –9.0 percent

(with forced Dirichlet) 3 – 2.4 percent 3,4 percent

Curved boundary 13.2 percent 0.9 percent
(with natural Dirichlet) : 1.3 percent 0.003 percent

—

boundaries are more realistically represented, The poly-

gonal shape could, fortuitously, give an accurate result

for a low polynomial order. But when N= 3 in our

example, the curved boundary results are uniformly

better. N cke that, for the curved boundary, the charge-

determination method gives better results than the

energy method. It is not obvious why this should be so.

However, there is no reason to expect that the energy

integral should give better results when the Dirichlet

condition is natural. From [1 ] it is clear that the energy

(and hence the capacitance) is not a stationary function

of the trial field zt(x, y).

VI. CONCLUSIONS

The V2Lriati0nal approach has a great many ad-

vantages over the traditional finite-difference method.

Mainly, the advantages relate to accuracy in both

modeling the problem and in computing the answer,

and in economy of computation. Another advantage is

that the solution is presented in terms of a continuous

polynomiid (or is easily converted to one by an algo-

rithm already programmed) rather than as a set of

potentials at discrete points. Thus interpolation is no

problem at all. Oftentimes, the field itself is not the

required answer, but some overall function of the field

is wanted, e.g., electrical energy stored (a volume

integral involving the gradient of potential squared),

overall electrical resistance (requiring an integral in-

volving the normal derivative of potential over the

boundary), etc. These integrals are conveniently per-

formed using the polnomial field approximation and

integration routines within the program.

It has often been stated that finite differences are

easier to program than finite elements. This is true only

for the simplest problems or when one is content with

both long computation times and low accuracies, For

instance, to improve the finite-difference scheme to

adequately cope with arbitrary boundaries is much

more difficult to accomplish than was the program

described in this paper.

In regions where the field varies rapidly, one may wish

to use smaller triangles in order to maintain overall

accuracy. This is the finite-element equivalent of mesh
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grading but, in marked contrast, it is very easily ac-

complished.

Because of its efficiency, the finite-element method

can be used within an optimization program. In the

first stages of optimization, some accuracy can be

sacrificed for speed. Reducing the polynomial order

from two to one would permit the majority of analyses

to be made within 2 s each. Thus there is no great

problem in using the finite-element program as an

automatic design tool. Reference [10 ] is an excellent

review paper on the subject of optimization.

Although the Helmholtz equation has not been ex-

plicitly studied here, there is every reason to expect

that accurate definition of boundary shape (in the

fashion described in this paper) will yield results im-

proved over those otherwise obtained.

The reader’s attention is directed to the isoparametric

element [8], [5, pp. 129–153], in which a curved

boundary is defined by a few nodes positioned along it

and an interpolating polynomial. The isoparametric ele-

ment is subject to nonunique mapping of coordinate

transformations [5, p. 134]. The element described in

this paper is not subject to such problems, but may in-

volve more computation. As pointed out in [1, pp. 389–

390 ], making the Dirichlet boundary condition natural

destroys positive-definiteness and may reduce the ac-

curacy, On the other hand, because the isoparametric

element permits Dirichlet boundary conditions to be

enforced along a curve, positive-definiteness is main-

tained. A detailed comparison of these two alternate

approaches would be useful.
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