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the amplifier noise figure was 25 dB. Noise figures in
the range 15 to 20 dB have been reported [7] for coaxial
amplifiers.

The amplifier results reported here were obtained by
using a 10-dB directional coupler to monitor the output.
The load VSWR at the amplifier input was less than
1.2:1 over the X band.

Discussion

The similarity between the effects of bias voltage and
heat-sink temperature indicate a reduction in carrier
mobility due to thermal effects as part of the stabiliza-
tion mechanism of supercritically doped Gunn-diode
amplifiers. Such diodes proved to be easily stabilized in
waveguide circuits that could provide low enough
values of load resistance. For the circuit shown in Fig. 1
the calculated load resistance decreased from 140 Q at 8
GHz to 42Qat 12.4 GHz.

The demonstration of stable operation of Gunn-diode
amplifiers in waveguide circuits opens the possibility of
solid-state amplifiers at millimeter wavelengths.
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Finite-Element Solutions within Curved Boundaries

DAVID ]J. RICHARDS anxo ALVIN WEXLER

Abstract—The paper shows that a curved boundary need not be
approximated by a small number of finite-element sides, resulting in
a coarse polygonal approximation to the shape of the region and
consequent inaccuracies, but may be defined as accurately as de-
sired. An algorithm and associated mathematics are presented for
locating the stationary point of a functional by the Rayleigh-Ritz
method with a two-variable power series as a trial function. As a
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particular example, the functional employed is one that is made
stationary by the solution of Poisson’s equation under mixed, Dirich-
let, or Neumann boundary conditions. The technique is based on the
fact that the three boundary conditions are natural ones. Results are
presented for a problem involving curved boundaries under mixed
and Neumann conditions and for the capacitance calculations of a
pair of noncoaxial cylinders having specified potentials. Comparisons
are made with the finite-difference method. It is concluded that the
finite-element method is, in nearly all aspects, superior te finite dif-
ferences-—particularly when curved boundary modeling errors are
reduced. It is expected that the method described will be equally
useful for, and quite simple to adapt to, the solution of the Helmholtz
equation in an enclosed region.
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1. INTRODUCTION
§§-S a particular example of the application of the

finite-element technique to regions that are
. bounded by curves, this paper treats the Poisson
equation

under the following boundary conditions:
o + o (s)(s) = hls) 2
and
o(s) = g(s) 3)

within a homogeneous, isotropic region. The mixed
boundary condition (2) holds over a portion of the
boundary C;. (When ¢ =0, this becomes the Neumann
boundary condition.) The Dirichlet boundary condition
(3) holds over a portion of the boundary denoted C,.
C denotes the entire boundary.

As indicated in [1], the appropriate functional is

r = [ [ 11 vule = 2u(s, )] aniy

+ [o(s)u? — 2h(s)u] ds

Cy

v — (9] =4

u — g(s)| —ds

Cs on (4)
for a two-dimensional region as a specific example. % is a
trial function approximation to ¢. As shown in [1], (2)
and (3) are boundary conditions that appear naturally
at the stationary point of (4).

- 2

II. RAYLEIGE—-RITZ PROCEDURE

Because boundary conditions (2) and (3) are natural,
we can employ as a trial function a linear combination
of functions, none of which need satisfy the stated
boundary conditions individually.

A convenient trial function is the polynomial

M
w(w,3) = 2 camy” )

il
where x and y are the independent variables and m and
» are integers. The ¢;, known as the variational parame-
ters, are coefficients to be determined in an attempt to
find the stationary point of (4). This is accomplished by
substituting (5) into (4), performing the indicated
operations, then differentiating F with respect to each
¢: and setting each resulting equation to zero. We are
left with a set of M simultaneous linear equations in M
unknowns and may solve for all the unknown ¢: co-
efficients. If a sufficient number of terms are employed,
u(x, ) should be a reasonable approximation to ¢(x, ).
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The order of the polynomial (5) is N. Thus
0<m+n<N (6)
and for all possible mn combinations, there must be
M=3N+ 1)K+ 2) (7

terms.
A simple, linear ordering scheme for the terms of the
complete polynomial (3) is obtained by taking

i=fm+nym+n+1)+n+1 (8)
thus giving an expanded version of (5) that is
w(x,y) =c1+cxteytex?teaxyt+ . (9

This is the system employed in the program associated
with this paper. For convenience, we can write

M
u(x,9) = 2 cifi (10)
=1
where
fi = amy" (11)

represents the variable terms of the polynomial and the
subscript is set by (8).

Once the coefficients are computed, the field approxi-
mation u(x, y) is completely specified. For reasons of
convenience, pointed out later, it is often preferred to
require that the polynomial collocate with the potential
u;(x; v;) at M particular node points specified by x;y;
coordinate pairs. (The subscript j indicates that #; is
not a continuous function of position.) To accomplish
this, the polynomial (10) is successively expressed at

each node pointj=1,2, - - - | M, ie.,
u
ui(%s, 9;) = ; ¢ifin (12)
where
Jii = 2"y (13)
Thus we have M equations in M unknowns giving
u = Be (14)
where
B = [fyl. (15)

Therefore, solving for ¢, the vector of coefficients of

(10),
c = Au (16)
where the square matrix
A = layz] = B amn

is either computed by inversion or assembled by the
Lagrange interpolation technique, one example being
[2]. Note that difficulties arise in the inversion of B as V
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increases. This is due to the fact that B is of Vander-
monde type [3, p. 157], [4, pp. 323-324], and con-
sequently becomes increasingly ill-conditioned with .

By expanding (16) we are able to express the unknown
coefficients ¢; in terms of the unknown node potentials
u;, i.e.,

M
Ci = 2 ain,. (18)
j=1
The variational parameters ¢;, in (5), may now be re-
placed by the new Rayleigh~Ritz parameters u;.

The source function p(x, y) is defined in terms of
potentials p;, one value at each of the node points
j=1, 2, , M, and an order N interpolating poly-
nomial gives p(x, ¥) as a continuous function. The
polynomial coefficients are given by (18), with the ay;
terms as previously found and with #; replaced by p;.

Functronal Stationary Point

To approximate the stationary point of the functional
(4) we differentiate F with respect to each variational
parameter #; and set each resulting equation to zero.
Rearranging, we obtain

on 9 ou 0 [/ ou
S5 Ge) 5 5 G o=
dx 0x \ duy, dy Oy \Ouz
ou ou du 9 [/ ou
+ mﬁds_f [_ _+u_<-_)] ds
Juy ouy on on \ Ouy
ff ——pdxdy—i— h———ds
RO o Ou

a <6u>
— g—\—)ds.
¢, On \Ou;
Equation (19) is arranged so that all unknown uy
appear linearly on the left-hand side and the right-hand

side is constant. It is easy to see that this is so. From
(10) and (18) we have

u = iﬂ:( % dufi)”f-

i=1 =1

(19)

(20)

u; appears linearly in (20), and in du/dx and du/dy as
well. Note that

ou

™ (21)

M
; aafi

where aq is a known constant, f,=xmy" with specified
m and #, and #%; does not appear. Also

du dy

Ju  Ju dx
Jdy on

— = 22
dn  Jdx In 22
where 0x/0n and dy/dn are direction cosines, has uy
appearing linearly. All x and y variables vanish upon
integration and ¢, p, %, and g are known functions of
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position. Therefore, when (19) is repeated for all un-
known u; with k=1, 2, , M, we obtain the matrix
equation

Su=»>b (23)
where S turns out to be symmetric. If no natural
Dirichlet boundary conditions are required, S'is positive
definite as well. Note that the usual method of specify-
ing a Dirichlet condition along a triangle side is to force
the V41 nodes along that side to the Dirichlet value.
In this case again S is positive definite.

III. SuBsSECTIONAL BASES

It is often advisable not to assume one polynomial
over the entire region of interest, but rather to subdivide
the region and consider a polynomial over each resulting
smaller region. Thus the finite-element method is a par-
ticular implementation of the variational method with
subsectional bases. There are at least three practical
reasons for the use of a finite-element scheme: 1) it per-
mits the equivalent of finite-difference mesh refinement
in regions of rapid field variation; 2) it produces a ma-
trix .S that has null matrix blocks, and thus permits
storage economies to be effected and block-iterative
schemes to be employed in large problems; and 3) it
allows complicated boundary shapes to be modeled in
a piecewise-linear (i.e., polygonal) sense when elements
with straight sides are employed. The last reason is not
a very convincing one, as many triangle sides are often
required to model a curved boundary accurately. This
paper describes an improved scheme for representing
curved boundaries accurately.

Triangular Subdivision

A convenient element shape for two-dimensional
regions is the triangle, and is consequently the one most
frequently employed.

Consider that each triangular subdivision has a piece-
wise-plane trial function «(x, y) expressed over it. This
corresponds to the first three terms of (9). Equivalently,
the trial function may be expressed in terms of the po-
tential at each of three noncollinear node points, con-
veniently located at the vertices of the triangle [5], [6].
Consider also that the potential at node points, at which
the vertices of two or more triangles meet, is common
to each of the triangles and that sides common to two
adjacent triangles are of equal length. Qualitatively, if
one thinks of the exact potential solution as a surface
over the x—y plane, the finite-element method produces
a piecewise-planar approximation to the solution re-
sembling triangular facets cut on a diamond.

The method is improved by defining a polynomial
solution approximation, in the two independent space
variables, over each triangular interval. Although, due
to storage limitations on the total number of free vari-
ables, the number of elements must be reduced, the
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result is usually a significant increase in accuracy. A
good example of this approach, applied to the solution
of the Helmholtz equation in waveguides, is furnished
by [7].

We will enforce continuity of potential across adja-
cent triangle sides. Each polynomial is defined in terms
of either coefficients or node potentials, the number of
such parameters being given by (7). An order N poly-
nomial is uniquely defined along a straight line by re-
quiring it to collocate with potentials at N1 node
points. Thus, if N+41 nodes are common to two adjacent
triangles, we are insured that the potential shall be con-
tinuous, although the normal derivative need not be.
However, it can be shown that the interface condition—
i.e., continuity of flux crossing the boundary between
adjacent elements—is a natural one and will be more
precisely satisfied as IV increases. Therefore, because of
this convenience, nodal potentials are employed rather
than polynomial coefficients as variational parameters
in the finite-element method.

It is usual to place a node at each vertex. As N+1 are
required along each side, a total of 3N nodes are dis-
tributed over the boundary. The remaining M —3N
=(N—1)(N—2)/2 nodes are inserted within the tri-
angle interior.

When the region is not subdivided, (23) results by
performing the operations described in (19). For a sub-
divided region, the functional (4) has a contribution
from each subdivision, i.e.,

F =Y F,.

F, is the contribution from one element region 7. Then

(24)

aF dF,

i —T_0

25)
0y, dup . (

Thus S and b are assembled by accumulating contribu-
tions of each subregion.

Curved Boundaries

Most previous implementations of the finite-element
method introduced considerable modeling errors in at-
tempting to approximate curved boundaries by triangle
sides. The errors occur because there are severe limita-
tions on the number of triangles that one can expect to
accommodate. However, there is no need to model a
curved boundary with triangle sides. This is because one
need not restrict the polynomial trial function to exist
only within the triangle, i.e., the polynomial is defined
over all space by node potentials only on the triangle.
And, conversely, the polynomial trial function need not
be used to represent the field over the entire element.
It could be restricted to part of an element, although
some node points lie outside of that part.

In the work reported in this paper, two vertices of
each triangle adjacent to a curved boundary are located
on the boundary. The boundary may curve into the
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triangle or away from it. If the former, that part of each
surface integral of (19) is performed not over the entire
triangle but only over that part of it in the interior of
the region. If the boundary curves away from the tri-
angle side, then the integration is performed over the
extra adjacent area, using the polyomial defined within
the triangle. This is entirely proper, as the polynomial
exists over all space and not just within the region con-
taining the defining node potentials u;. Likewise, each
contour integral follows the boundary exactly.

To actually accomplish this end the boundary could
be defined in a piecewise-polynomial sense. Thus the
resulting integrations all involve polynomials and may
be fairly easily accomplished. In this work, for simplic-
ity, the boundary was defined in a piecewise-linear
(polygonal) fashion—thus requiring more computation
than would otherwise be needed, as a large number of
linear pieces needed to be employed.

The above polygonal approach should not be con-
fused with that of approximating the boundary with
triangle sides. The latter approach is limited as to the
number of linear segments available, whereas the former
permits one to use virtually as many as desired in order
to approximate the boundary with a precision consistent
with the overall accuracy expected.

IV. INTEGRATION SCHEMES

Following (22), it was pointed out that the integrands
of (19) are power series containing terms of the form
xmyn. We shall see that if the boundary is represented
by piecewise polynomials of the same type, the resulting
integrations are conveniently performed after certain
simple polynomial multiplications are carried out. Such
operations can be efficiently programmed.

Contour Integrals

Between any two points ¢ and 4 the contour integral
consists of a sequence of terms of the form [, xmy» ds.
Note that the argument can include o(s) and k(s) as
specified polynomial functions of position.

The equation of the line connecting ¢ to b is

y = a+ Bz (26)
where o and B are easily found. Since
ds = /14 82dx (27)

we get

b ap
f amyt ds = \/iT;_(?Ef (o + Bx)* dx

a

o xm—l—l(a + ,8%')“ I
— 1 2 b —
vi+é { m+n+1 |,
an kK

- R m n——ldt 28
et B x}( )
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which gives an analytic solution by a recursive defini-
tion., This is repeated until #—1=0 and the final inte-
gration remaining involves only x™,

If the slope of the straight line becomes too steep,
then by writing

x =+ oy (29)

we integrate

b Wb
[Coyras=viFE [ omra 60

instead.

Note that all contour integrals are performed in a
counterclockwise direction about any region.

The unit normal % to a point on the boundary is easily
defined in terms of an angle # measured counterclockwise
from the positive x direction. Again, considering a small
linear boundary segment,

Py

A = tcosf -+ Fsind.

(31)

To obtain the normal derivative of a polynomial u, say,
it is only required to multiply each term of # by the
appropriate direction cosine:

ou  ou ou |
= —cos § -+ —sin§.
on  9x dy

(32)

Equation (19) also requires (8/0#%)(du/du;) and this is
obtained in the same fashion.

Surface Integrals

Surface integrals involve terms of the form

b v
— f f 2my" dydx
Za 0

where the limit ¥ on the inner integral is a function of x.
This gives the integral over the region enclosed by the
straight lines a~b, y=0, x =x,, and x =x;. Therefore,

p ¥
— f f ™y dydx
Zq 0

It

zp a+fz
- f f xmy" dydx
Ta ]
—1 i

b
m nt+1
n+lj;ax(a+ﬂx) dx (33)
which may be integrated as in (28). If the slope is steep,
a change of variable of integration (from x to y) is made
as in (30). Note that for a closed region the directions
of integration must be counterclockwise around the
boundary.

It

V. REsuLTS

In order to obtain an insight into the accuracy of the
results produced by the program, a number of tests were
carried out. Problems having analytical solutions
(found by separation of variables or conformal trans-
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formations) were solved numerically. An error measure

/é (¢: — MSZ—
J TEe

was evaluated over a discrete-point set. ¢, is the exact
solution and %, the computed value at node 7. The num-
ber of points was approximately m =400. Equation (34)
is actually the ratio of the Euclidian error norm to the
Euclidian function norm (i.e., a fractional error norm)
with delta-function weighting factors.

Another useful measure of numerical solution quality
is the computation of the flux imbalance F. The frac-
tional flux imbalance is

Ju
f — 1 ds
s 07l

F=eer—nr 35
™ (35)
f— ds
s, 01

where the integral on the denominator is performed
along the boundary across which flux enters the region,
and the numerator consists of an integral about the
entire boundary. A homogeneous region and p(x, y) =0
is assumed.

A residual measure R was also defined to indicate,
particularly in the absence of an exact solution, the
fractional deviation of V2« from zero. Thus

E= (34)

8§

i(v%t i)2
- (36)

is computed by evaluating V2« (x, y) at each of the m
points specified. Thus we have a fractional residual
norm.

The smaller the value of E the more accurate the
answer. Usually, F and R decrease with increasing ac-
curacy. Note that we cannot usually obtain E, as the
solution is rarely known exactly. However, F and R can
be computed from the approximate solution. If we can
qualitatively relate F and R to E, then an assessment of
the accuracy of a given solution can be made.

Among the types of problems that were solved, for
which exact solutions were known, were a rectangular
region, a sector of an annulus, and a re-entrant corner.
Boundary conditions tested on these shapes were homo-
geneous and nonhomogeneous Dirichlet, mixed, and
Neumann. Problems solved generally included at least
two of the above conditions.

With all problems, E decreased as the order of the
polynomial increased to N =35. In all cases also F and R
decreased with increasing polynomial order. For ex-
ample, in solving the field within the sector of an an-
nulus having mixed boundary conditions, the percentage
flux imbalance (i.e., FX100) dropped from 3.6 to 0.38
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Fig. 1. Equipotential contours V within a region having curved
boundaries, given by the solution of Laplace’s equation with
Neumann and mixed boundary conditions. Dashed lines indicate
the finite-element triangle arrangement employed. For clarity,
dashed lines are omitted along boundary segments having large
radii. N=2.

percent, and the percentage error norm (i.e., £X100)
dropped from 0.17 to 0.034 percent, while polynomial
order increased from three to four using two triangles.
Thus E and F may be considered very roughly propor-
tional. These figures are representative of all tests run.

The field in the immediate vicinity of an internal
corner is not found accurately, as the power series is in-
complete in such a case. However, the field reasserts its
correct shape a small distance away. The above-
mentioned results also apply in the case of internal
corners.

Example with Neumann and Mixed Boundary Conditions

Fig. 1 shows a fairly complicated region bounded by
two radial lines (d—e and a-b), one line parallel to a-b,
three coaxial curves of fairly large radius, and two arcs
having a significantly smaller radius. Neumann and
mixed boundary conditions are imposed as indicated.
The curve b—d was described by 60 linear segments and
a—e by 40 of them so that the shapes plotted on 83-by-
11-in paper looked smooth and not polygonal.

The problem is not just an academic abstraction but
is a practical heat-flow problem translated to electrical
terms. It represents an asymmetric portion of a section
of finned nuclear fuel sheath with a uranium heat source
in the center of a pipe that is immersed in coolant. The
flow of heat into the coolant is impeded by the effect of
the boundary layer, i.e., convective heat dissipation.
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TABLE 1
FintTE DIFFERENCE-FINITE ELEMENT COMPARISON

IBM 360/65 Computer

Number Percentage
of of Flux
Equations CPU Time Imbalance
Finite difference 155 3.0 min® 0.70
Finite element 420 0.1 min 0.06

s Optimum acceleration factor used.
b Polynomial order N =2 and number of triangles equal to 13 as
shown in Fig. 1.

This is analogous to a resistive boundary in which the
current crossing it is proportional to the voltage differ-
ence.

Although the finite-element method is generally con-
sidered to be more efficient than the finite-difference
method, it could be argued that the latter is sometimes
more accurate within curved boundaries. Because of the
large number of finite-difference nodes that may be
accommodated, by using successive overrelaxation, the
boundary may be fairly precisely described. Using finite
elements, and direct-solution methods, fewer nodes are
employed with only a small number adjacent to the
boundary, thus resulting in larger modeling errors due
to the coarse polygonal approximation. However, this
argument cannot be sustained when the accurate
boundary-definition method, described in this paper, is
used in the finite-element scheme.

The problem defined in Fig. 1 was also solved by finite
differences. The Laplacian operator in polar coordinates
was discretized. Uniform angular and radial intervals
were used, except near boundaries where nonuniform
operators were employed when needed. To speed up the
finite-difference program as much as possible, the equa-
tions resulting from nonuniform operators were stored
and retrieved as required rather than regenerated at
each iteration. Table 1 shows two representative com-
puter runs comparing finite differences and finite ele-
ments. A brief glance at the results indicates that the
finite-element program produces results that are very
much more accurate than finite differences in much less
time. The accuracy is improved by perhaps a factor of
10 while the time is reduced by a factor of 30 with
roughly equal storage requirements.

As a check, the fractional residual norm R was calcu-
lated using the five-point discretization of V2 over the
difference and variational solutions. R was found to be
about 25 times larger in the former than in the latter
results. This served to indicate that the difference equa-
tions were not as accurately solved as they might have
been. Some, but not very much, accuracy could still be
gained by continuing the successive overrelaxation (SOR)
process at the expense of still more computing time.

There is no acceleration factor that one need be con-
cerned with in the finite-element scheme, the equations
being solved directly. The finite-difference results were
obtained by using the optimum acceleration factor de-
termined experimentally in advance, Generally, the
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factor will not be known and so the 3.0 min central
processing unit (CPU) time stated should be considered
a lower bound for this problem. The execution time for
the finite-element program depends primarily upon the
polynomial order of the approximate trial field and in-
creases roughly in proportion to N? to N°® for a poly-
nomial of order N.

Along the radial lines and the inner surface, boundary
condition expressions were written using central differ-
ence derivative expressions of order A2 Everywhere else,
boundary node potentials were determined by linear
interpolation between two adjacent interior nodes and
by employing the stated derivative boundary condition.
This is a first-order approach and was employed in
preference to a more complicated higher order approach.
The flux imbalance was not always found to be a mono-
tonic function of mesh interval spacing. For example,
upon going from 155 to 200 equations, the heat-flux
imbalance increased from 0.7 (one of the better figures)
to 3.3 percent, and the temperature plots suffered as
well. On the other hand, the finite-element results
always behaved monotonically and settled down quickly
with increasing polynomial order. When the case N=3
was run (78 equations), for the problem of Fig. 1, the
potential contours could not be distinquished from those
presented in this paper.

It has been found that the accuracy of the finite-
difference method suffers greatly by having boundaries
not coincident with mesh lines. In order to improve the
accuracy it is necessary to have a fine grid everywhere,
thus causing an unnecessary increase in interior nodes
and resulting in increased computational and storage
requirements. As an alternative to this, the mesh can
gradually be refined in regions adjacent to the boundary.
However, this introduces great programming difficulties
and dubious accuracies. Previous finite-element schemes
have introduced considerable modeling errors by ap-
proximating curved boundaries by triangle sides. Here
we have been able to describe the boundary to any re-
quired accuracy without the expense of introducing
additional unknowns.

One should be wary of nonconvex regions, even if the
internal curves are far from being corners. Our experi-
ence has shown that such bends should be enclosed
within one or more triangles of fairly small extent, as in
Fig. 1. This has the effect of preventing “contamination”
of the rest of the solution. An injudicious rearrangement
of triangles can cause the error to increase by an order
of magnitude.

Off-Center Cylinders

The capacitance calculation of the pair of noncoaxial
cylinders, of Fig. 2, serves as an example of curved
boundaries under Dirichlet boundary conditions. Due
to symmetry, only half of the cable was considered with
an ¢lement arrangement as indicated. The capacitance
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Fig. 2. Off-center cylinders modeled by triangle sides (top) and by
small linear segments (bottom) with 90 segments per curve.
Equipotential contours are indicated with 1 V between conduct-
ing surfaces. N=3.

in farads/meter, is given by Smythe [9, pp. 76-78]:

C = 2me [Cosh—1 <§_LR_;€)]‘
2RiR;

(37)
Ry and R, are the radii of the cylinders and D is the
distance between their centers.

There are two ways of calculating the capacitance of
the system. By computing the stored energy, and noting
that the conducting surfaces have a potential difference
of 1V between them,

C=eff | Vo |2 dedy

where the integration is performed over the entire cross
section (i.e., twice the region shown in Fig. 2). Alterna-
tively, the capacitance is equal to the charge stored
when V=1, i.e.,

(38)

(39

where the integral is performed over the outer or inner
conductor.

The usual way of modeling such curved boundaries is
by means of triangle sides, resulting in the rather coarse
approximation shown at the top of Fig. 2. The Dirichlet
condition is enforced. Having introduced this amount
of modeling error, one can only expect to deduce ac-
curately the solution of a structure that is of no interest.
In the bottom part of the figure, the actual problem is
much more faithfully represented by using 90 linear seg-
ments for each curve with the boundary condition made
natural.

Table I1 indicates, as one would expect, that the
capacitance is more accurately determined when the
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TABLE II

Capacitance Calculation Errors for a Pair of
Off-Center Cylinders (Fig. 2)

Cexaer = 92.229 pF/m

a
N of [IVslrasy  af Zas
on
Polygonal boundary 2 —1.4 percent —9.0 percent
(with forced Dirichlet) 3 —2.4 percent 3.4 percent
Curved boundary 2 13.2 percent 0.9 percent
(with natural Dirichlet) 3 1.3 percent 0.003 percent

boundaries are more realistically represented. The poly-
gonal shape could, fortuitously, give an accurate result
for a low polynomial order. But when N=3 in our
example, the curved boundary results are uniformly
better. Note that, for the curved boundary, the charge-
determination method gives better results than the
energy method. It is not obvious why this should be so.
However, there is no reason to expect that the energy
integral should give better results when the Dirichlet
condition is natural. From [1] it is clear that the energy
(and hence the capacitance) is not a stationary function
of the trial field u(x, y).

VI. CoNCLUSIONS

The wvariational approach has a great many ad-
vantages over the traditional finite-difference method.
Mainly, the advantages relate to accuracy in both
modeling the problem and in computing the answer,
and in economy of computation. Another advantage is
that the solution is presented in terms of a continuous
polynomial (or is easily converted to one by an algo-
rithm already programmed) rather than as a set of
potentials at discrete points. Thus interpolation is no
problem at all. Oftentimes, the field itself is not the
required answer, but some overall function of the field
is wanted, e.g., electrical energy stored (a volume
integral involving the gradient of potential squared),
overall electrical resistance (requiring an integral in-
volving the normal derivative of potential over the
boundary), etc. These integrals are conveniently per-
formed using the polnomial field approximation and
integration routines within the program.

It has often been stated that finite differences are
easier to program than finite elements. This is true only
for the simplest problems or when one is content with
both long computation times and low accuracies, For
instance, to improve the finite-difference scheme to
adequately cope with arbitrary boundaries is much
more difficult to accomplish than was the program
described in this paper.

In regions where the field varies rapidly, one may wish
to use smaller triangles in order to maintain overall
accuracy. This is the finite-element equivalent of mesh
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grading but, in marked contrast, it is very easily ac-
complished.

Because of its efficiency, the finite-element method
can be used within an optimization program. In the
first stages of optimization, some accuracy can be
sacrificed for speed. Reducing the polynomial order
from two to one would permit the majority of analyses
to be made within 2 s each. Thus there is no great
problem in using the finite-element program as an
automatic design tool. Reference [10] is an excellent
review paper on the subject of optimization.

Although the Helmholtz equation has not been ex-
plicitly studied here, there is every reason to expect
that accurate definition of boundary shape (in the
fashion described in this paper) will yield results im-
proved over those otherwise obtained.

The reader’s attention is directed to the isoparametric
element [8], [5, pp. 129-153], in which a curved
boundary is defined by a few nodes positioned along it
and an interpolating polynomial. The isoparametric ele-
ment is subject to nonunique mapping of coordinate
transformations [5, p. 134]. The element described in
this paper is not subject to such problems, but may in-
volve more computation. As pointed out in [1, pp. 389—
390], making the Dirichlet boundary condition natural
destroys positive-definiteness and may reduce the ac-
curacy. On the other hand, because the isoparametric
element permits Dirichlet boundary conditions to be
enforced along a curve, positive-definiteness is main-
tained. A detailed comparison of these two alternate
approaches would be useful.
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